Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Clin Infect Dis ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2284696

ABSTRACT

BACKGROUND: SARS-CoV-2 reinfection is poorly understood, partly because few studies have systematically applied genomic analysis to distinguish reinfection from persistent RNA detection related to initial infection. We aimed to evaluate the characteristics of SARS-CoV-2 reinfection and persistent RNA detection using independent genomic, clinical, and laboratory assessments. METHODS: All individuals at a large academic medical center who underwent a SARS-CoV-2 nucleic acid amplification test (NAAT) ≥ 45 days after an initial positive test, with both tests between March 14th and December 30th, 2020, were analyzed for potential reinfection. Inclusion criteria required having ≥2 positive NAATs collected ≥45 days apart with a cycle threshold (Ct) value <35 at repeat testing. For each included subject, likelihood of reinfection was assessed by viral genomic analysis of all available specimens with a Ct value <35, structured Ct trajectory criteria, and case-by-case review by infectious diseases physicians. RESULTS: Among 1,569 individuals with repeat SARS-CoV-2 testing ≥45 days after an initial positive NAAT, 65 (4%) met cohort inclusion criteria. Viral genomic analysis characterized mutations present, and was successful for 14/65 (22%) subjects. Six subjects had genomically-supported reinfection and eight subjects had genomically-supported persistent RNA detection. Compared to viral genomic analysis, clinical and laboratory assessments correctly distinguished reinfection from persistent RNA detection in 12/14 (86%) subjects but missed 2/6 (33%) genomically-supported reinfections. CONCLUSION: Despite good overall concordance with viral genomic analysis, clinical and Ct value-based assessments failed to identify 33% of genomically-supported reinfections. Scaling-up genomic analysis for clinical use would improve detection of SARS-CoV-2 reinfections.

3.
Nat Commun ; 14(1): 574, 2023 02 02.
Article in English | MEDLINE | ID: covidwho-2221807

ABSTRACT

SARS-CoV-2 distribution and circulation dynamics are not well understood due to challenges in assessing genomic data from tissue samples. We develop experimental and computational workflows for high-depth viral sequencing and high-resolution genomic analyses from formalin-fixed, paraffin-embedded tissues and apply them to 120 specimens from six subjects with fatal COVID-19. To varying degrees, viral RNA is present in extrapulmonary tissues from all subjects. The majority of the 180 viral variants identified within subjects are unique to individual tissue samples. We find more high-frequency (>10%) minor variants in subjects with a longer disease course, with one subject harboring ten such variants, exclusively in extrapulmonary tissues. One tissue-specific high-frequency variant was a nonsynonymous mutation in the furin-cleavage site of the spike protein. Our findings suggest adaptation and/or compartmentalized infection, illuminating the basis of extrapulmonary COVID-19 symptoms and potential for viral reservoirs, and have broad utility for investigating human pathogens.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Mutation , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Science ; 376(6599): 1327-1332, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1861568

ABSTRACT

Repeated emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased fitness underscores the value of rapid detection and characterization of new lineages. We have developed PyR0, a hierarchical Bayesian multinomial logistic regression model that infers relative prevalence of all viral lineages across geographic regions, detects lineages increasing in prevalence, and identifies mutations relevant to fitness. Applying PyR0 to all publicly available SARS-CoV-2 genomes, we identify numerous substitutions that increase fitness, including previously identified spike mutations and many nonspike mutations within the nucleocapsid and nonstructural proteins. PyR0 forecasts growth of new lineages from their mutational profile, ranks the fitness of lineages as new sequences become available, and prioritizes mutations of biological and public health concern for functional characterization.


Subject(s)
COVID-19 , Genetic Fitness , SARS-CoV-2 , Bayes Theorem , COVID-19/virology , Genome, Viral , Humans , Mutation , Regression Analysis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
Cell ; 185(3): 485-492.e10, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1588148

ABSTRACT

An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Contact Tracing/methods , Disease Outbreaks , Female , Genome, Viral , Humans , Infant , Infant, Newborn , Male , Massachusetts/epidemiology , Middle Aged , Molecular Epidemiology , Phylogeny , SARS-CoV-2/classification , Vaccination , Whole Genome Sequencing , Young Adult
6.
Science ; 371(6529)2021 02 05.
Article in English | MEDLINE | ID: covidwho-1388436

ABSTRACT

Analysis of 772 complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from early in the Boston-area epidemic revealed numerous introductions of the virus, a small number of which led to most cases. The data revealed two superspreading events. One, in a skilled nursing facility, led to rapid transmission and significant mortality in this vulnerable population but little broader spread, whereas other introductions into the facility had little effect. The second, at an international business conference, produced sustained community transmission and was exported, resulting in extensive regional, national, and international spread. The two events also differed substantially in the genetic variation they generated, suggesting varying transmission dynamics in superspreading events. Our results show how genomic epidemiology can help to understand the link between individual clusters and wider community spread.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Boston/epidemiology , COVID-19/transmission , Disease Outbreaks , Epidemiological Monitoring , Humans
7.
J Clin Pathol ; 74(8): 496-503, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1247388

ABSTRACT

Developing and deploying new diagnostic tests are difficult, but the need to do so in response to a rapidly emerging pandemic such as COVID-19 is crucially important. During a pandemic, laboratories play a key role in helping healthcare providers and public health authorities detect active infection, a task most commonly achieved using nucleic acid-based assays. While the landscape of diagnostics is rapidly evolving, PCR remains the gold-standard of nucleic acid-based diagnostic assays, in part due to its reliability, flexibility and wide deployment. To address a critical local shortage of testing capacity persisting during the COVID-19 outbreak, our hospital set up a molecular-based laboratory developed test (LDT) to accurately and safely diagnose SARS-CoV-2. We describe here the process of developing an emergency-use LDT, in the hope that our experience will be useful to other laboratories in future outbreaks and will help to lower barriers to establishing fast and accurate diagnostic testing in crisis conditions.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Emergency Service, Hospital , Laboratories, Hospital , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/virology , Humans , Predictive Value of Tests , Reproducibility of Results
8.
bioRxiv ; 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-637849

ABSTRACT

The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and cells rendered permissive by ectopic expression of various mammalian ACE2 orthologs. Nonetheless, D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts a critical interprotomer contact and that this dramatically shifts the S protein trimer conformation toward an ACE2-binding and fusion-competent state. Consistent with the more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated. These results indicate that D614G adopts conformations that make virion membrane fusion with the target cell membrane more probable but that D614G retains susceptibility to therapies that disrupt interaction of the SARS-CoV-2 S protein with the ACE2 receptor.

9.
Cell ; 183(3): 739-751.e8, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-758650

ABSTRACT

The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide, reaching near fixation in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and on cells rendered permissive by ectopic expression of human ACE2 or of ACE2 orthologs from various mammals, including Chinese rufous horseshoe bat and Malayan pangolin. D614G did not alter S protein synthesis, processing, or incorporation into SARS-CoV-2 particles, but D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts an interprotomer contact and that the conformation is shifted toward an ACE2 binding-competent state, which is modeled to be on pathway for virion membrane fusion with target cells. Consistent with this more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated.


Subject(s)
Betacoronavirus/physiology , Betacoronavirus/ultrastructure , Spike Glycoprotein, Coronavirus/physiology , Spike Glycoprotein, Coronavirus/ultrastructure , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/pathogenicity , COVID-19 , Cells, Cultured , Coronavirus Infections/virology , Female , Genetic Variation , HEK293 Cells , Humans , Male , Models, Molecular , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Conformation , Protein Processing, Post-Translational , Receptors, Coronavirus , Receptors, Virus/metabolism , SARS-CoV-2 , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL